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Fifteen iron ore samples collected from Wadi Sawawin, Duba, Saudi Arabia were analysed using X-ray
diffraction in order to determine mineral composition. Atomic absorption analysis was used to
determine concentrations of Al, Ca, Fe, K, Mg, Bi, Pb, Th and U. Natural radioactivity concentrations
were determined using gamma-ray spectrometry based on a hyper pure germanium (HPGe) detector;
concentrations ranged from 1.89+0.39 to 4.50+0.53 Bq kg'l, 1.21+0.16 to 3.60%£0.56 Bq kg'1 and detection
level to 10.33+1.32 Bq kg™ for ®Ra, ***Th and “K, respectively. In order to assess the potential
radiological risks to human health, the absorbed dose rate, radium equivalent activity, annual absorbed
dose and external hazards were determined and compared to limits recommended by UNSCEAR.
Results were within recommended safe ranges, meaning that the area under study is radiologically safe
for habitation and that local iron ores are radiologically safe to be used as construction materials.

Key words: Atomic absorption spectrometer, natural radioactivity, radiological hazard, X-ray powder diffraction

(XRD).

INTRODUCTION

Raw materials have emerged as being a key factor in the
industrial growth of Wadi Sawawin, in the Duba region of
Saudi Arabia, along with agriculture and tourism. Wadi
Sawawin is located at 28°02'26.49" North, 360°02'19.48"
East, 45 km northeast of Duba, Tabuk Province, Saudi
Arabia. The northern region of Duba is the location of the
largest iron mine in Saudi Arabia, the Wadi Sawawin
mine. This mine is comprised of a vast industrial complex
where millions of tons of iron ore are produced annually;
the reserve annual production of this mine is estimated to
be greater than 500 million tonnes. Duba is an

international crossing point, being one of the most
important geographical connections between not only the
southern and western regions of Duba, but also between
the Eastern Province of Saudi Arabia and neighbouring
countries. Figure 1 shows the location where samples
were collected for this study. Natural radioactivity
depends upon the geology of the region (Zheng et al.,
2007; Rohit and Bala, 2014). A knowledge of both the
concentration of naturally occurring radionuclides and the
distribution of such radionuclides within geological
materials is useful in order to evaluate dose rates and to
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Figure 1. Location of iron ore samples collected from Wadi Sawawin.

establish reference data, which, in turn, play an important
role in environmental radiation protection (Todorovic et
al., 2015).

The aims of this study, which was based in Wadi
Sawawin, were: (i) to assess local radiological hazards,
(i) to determine the corresponding radiation external
doses to humans that were associated with the presence
of a selection of locally occurring natural radionuclides
(**Ra, *®*Th and “°K) and (i) to specify mineral
constituents of the local iron ores and the elemental
concentrations of aluminium, calcium, iron, potassium,
magnesium, bismuth, lead, thorium and uranium in those
ores.

MATERIALS AND METHODS
Sampling and measurements

Fifteen iron ore samples were collected from Wadi Sawawin. Each
sample was selected randomly at 1 to 2 km intervals. The iron ore
samples were ground and sieved using a 1 mm mesh in order to
obtain a uniform grain size. The ground samples were dried at
110°C for 12 h in order to remove all moisture and then weighed.
For radiometric analysis, each ground and weighed sample was
stored in a sealed polyethylene Marinelli beaker and kept for four
weeks in order to attain a secular equilibrium between the ***Ra
and *®Ra nuclides, as well as their progenies, by preventing
leakage of radon gas (Malczewski and Zaba, 2012; Bello et al.,
2015).

Ten grams of each sample were analysed using a Bruker XR-D
D8 Advance powder X-ray diffraction system (Bruker, USA) in order
to determine the concentration of the following elements:
aluminium, calcium, iron, potassium, magnesium, bismuth, lead,
thorium and uranium. A further 10 gm of each sample was analysed
using a PinAAcle 900F atomic absorption spectrometer (Perkin
Elmer, MA, USA). Samples of volume 5 mL were analysed for
radioactivity levels using a Hyper-Pure Germanium detector (HPGe)

gamma spectrometer, p-type crystal; Genie 2000 Basic
Spectroscopy Software (Canberra, USA) was used for data
acquisition, display and analysis. The relative efficiency of the
detector was 25% and the full width at half maximum (FWHM) at
1461 keV was 4.2 keV (Rajeshwari et al., 2014; Raghu et al., 2015;
Shittu et al., 2015). The lowest limits of detection were determined
to be 0.30+0.06, 0.26+0.04 and 1.71+0.05 Bq kg™ for ?*°Ra, *°Th,
and “°K, respectively. Each measurement was performed for a time
period of approximately 10 h. The system was calibrated using
standard reference material from International Atomic Energy
Agency. Background radiation was measured using the same
methodology as for the radiation measurements for the samples
(Badawy et al., 2015). The activity concentrations of **?Th, ?*Ra
and “°K were specified by using the following obvious and explicit
peaks: 2°Th (338.32, 911.21 and 968.97 keV of *®Ac, 727.25 keV
of ??Pb and 583.02, 2614.48 keV of 2°%Tl), #°Ra (351.9 keV of
#ph; 609.3, 1120.3 and 1764 keV of ?“Bi) and *°K 1460.83 keV)
(Amin, 2012).

Calculations methodology

The natural radionuclide concentrations in the iron ore samples
were determined using the following equation (Patra et al., 2006;
Laith et al., 2015):

Net peak area

Activity (Bagkg ™) = . — — —
Collection time x Emission probability x Efficiency of the det ector (1)

Additionally, the radium-equivalent activity (Raeg), the air-absorbed
dose rate (D), the annual effective dose rates (AEDR) and the
external hazard index (Hex) of the iron ore were calculated, as
shown in (Equations 2 to 5), respectively (Beretka and Mathew,
1985):

Ry = Cra +1.43C;, +0.077C, "

D =0.0417C, +0.462C,, +0.604C,, -
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Table 1. Average activity concentration of 2*Ra, %*2Th, “°K in the iron ore used in this study.

Average activity concentration (Bq kg™)

Sample code

“°Ra 2321 40
WD-1 2.18+0.30 1.21+0.16 2.40+0.36
WD-2 3.66+0.36 1.75x+0.22 3.18+0.42
WD-3 2.92+0.36 1.32+0.17 2.79+0.13
WD-4 3.79+£0.44 1.92+0.28 4.08+0.98
WD-5 4.11+0.64 1.74+0.30 DL
WD-6 3.65+0.53 1.65+0.24 5.03+1.05
WD-7 1.89+0.39 3.60+£0.56 2.72+0.51
WD-8 3.21+0.39 1.88+0.29 DL
WD-9 3.40+0.27 1.65+0.43 DL
WD-10 3.73+0.50 1.61+0.25 4.28+1.01
WD-11 3.75+£0.57 1.74+0.24 2.20+0.50
WD-12 3.71+0.42 3.57+0.48 10.33£1.32
WD-13 4.50+£0.53 1.86+0.31 5.23+0.75
WD-14 3.68+0.41 2.51+0.31 7.69+1.01
WD-15 4.20£0.41 2.72+0.30 7.80+0.81

DL: detection limit.

AEDR = D x 24h x 365days x 0.2x 0.7 x10™° @

_CRa ﬁjL Cy <1

* 370 259 4810 5)

In Equations 2, 3 and 4, the terms Cgra, Crh and Ck are average
activity concentrations of #*Ra, **?Th and “°K, respectively. The
measured activity was converted into doses using the following
conversion factors: 0.0414 nGy h™* per Bq kg™ for “°K, 0.461 nGy h’
! per Bq kg™* for ?°Ra, and 0.623 nGy h™* per Bq kg* for Z2Th. In
Equation 4, the number 0.7 is a conversion factor and 0.8 is the
outdoor occupancy factor for when most people spend 20% of their
time indoors.

RESULTS AND DISCUSSION
Natural radioactivity determination

The average radionuclide activity concentrations in the
iron ore samples varied from 1.89+0.39 to 4.50+0.53 Bq
kg™, from 1.21+0.16 to 3.60+0.56 Bq kg™, and from the
detection limit (DL) to 10.33+1.32 Bq kg™ for **Ra, **Th
and “°K, respectively, as detailed in Table 1. All
measurements fell below the manufacturer
recommended values of 35, 30 and 400 Bq kg™ for **°Ra,
232Th and “°K, respectively (UNSCEAR, 1993).

The Ragq of the iron ores varied between 2.36 and 9.61
Bq kg'l, as detailed in Table 2. The Rag, values were
below the recommended level of 370 Bq kg'1 for building
material and its products (NEA/OECD-Nuclear Energy
Agency, 1979). The absorbed dose rate D was determined
in the range of 1.00 to 4.30 nGy h™. The maximum value
of D less than permissible limit (84nGy h™) according to

UNSCEAR (2000). The AEDR was within the range
0.001 to 0.005 mSv y'l, indicating that the AEDR is within
the 0.3 to 1.0 mSv y" range recommended by the
OECD/NEA-Nuclear Energy Agency (1979). The He
values of the iron ore samples were also calculated and
they ranged from 0.01 and 0.03, as shown in Table 2. For
the safe use of a material in the construction of dwellings,
it is proposed that He, should be less than unity (Beretka
and Mathew, 1985). Figure 2 shows the average
radionuclide activity concentrations in the iron ore samples,
while Figures 3, 4, 5 and 6 show the parameters of the
radiological hazards: Raeq,D, AEDR and Hg,, respectively.
Therefore, iron ore from the region studied here is
radiologically safe to be used as a construction material
without posing any significant radiological risk to users or
the general populations (Faanu et al., 2011).

Malczewski and Zaba (2012) determined uranium,
thorium and potassium concentrations in rocks obtained
from the Modane-Aussois region of France (Western
Alps) using HPGe. Their results revealed that the activity
concentration of ***U ranged from 9 Bq kg™ (quartzite) to
29 Bqg kg"l (dolomite). Furthermore, in that study, the
highest activity concentrations that were associated with
*2Th and “°K were measured in calcschist and in
guartzite (18 Bq kg"l and 572 Bq kg'l, respectively).
Akkurt and GUno%Iu (2014) evaluated the radioactivity
levels of “°H, **Th and **Ra in sedimentary rock
obtained from Turkey, where they found that the mean
activities were below the recommended values identified
by UNSCEAR(2000). In that study, the calculated
average values of Raeq, D, AEDT and He, were 99.0 Bq
kg'l, 45.43 nGy h™, 0.056mSv y'l and 0.27, respectively.
All measurements were lower than the global maximum
values reported by UNSCEAR (2000).
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Table 2. Radiologic hazard effects D, AEDE, Raeq and Hex of the iron ore used in this study.

Sample code D (nGy h™) AEDE (mSvy™) Raeq (Bg kg™) Hex
WD-1 1.83 0.002 4.09 0.01
WD-2 2.88 0.004 6.41 0.02
WD-3 2.26 0.003 5.02 0.02
WD-4 3.08 0.004 6.85 0.02
WD-5 3.01 0.004 6.71 0.02
WD-6 2.90 0.004 6.40 0.02
WD-7 2.77 0.004 6.23 0.02
WD-8 2.68 0.003 6.01 0.02
WD-9 1.00 0.001 2.36 0.01
WD-10 2.87 0.004 6.36 0.02
WD-11 2.88 0.004 6.41 0.02
WD-12 4.30 0.005 9.61 0.03
WD-13 3.48 0.004 7.70 0.02
WD-14 3.54 0.004 7.86 0.03
WD-15 3.90 0.005 8.69 0.03

e
o N

Average activity concentrations of “*Ra,““Th
and “K in samples
S N & O

Figure 2. Average activity concentration of ??°Ra, *2Th and “°K in Iron ore sample.
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Figure 3. The parameter of the radiological hazard: Radium equivalent activity Raeq in Bokg™.
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Table 3. Mean elemental concentrations determined using an atomic absorption spectrometer analyser.

Element Al Ca Fe K Mg Bi Pb Th U

unit % % % % % ppm ppm ppm ppm
DL 0.02 0.02 0.01 0.01 0.01 10.00 2.00 1.00 5.00
WD-1 0.10 3.79 38.85 DL 0.35 BDL 14.29 1.27 BDL
WD-2 0.20 3.23 54.69 DL 0.12 BDL 4.79 2.97 BDL
WD-3 0.15 3.52 47.01 DL 0.24 BDL 9.54 2.12 BDL
WD-4 0.18 2.96 45.05 DL 0.13 BDL 7.06 2.09 BDL
WD-5 0.17 3.50 55.97 DL 0.16 BDL BDL 1.96 BDL
WD-6 0.20 2.95 60.99 DL 0.13 BDL BDL 2.01 BDL
WD-7 0.13 2.20 48.27 BDL 0.07 BDL 7.78 BDL BDL
WD-8 0.19 2.61 47.10 DL 0.12 BDL 5.10 1.23 BDL
WD-9 0.24 2.97 45.86 DL 0.17 BDL 2.29 151 BDL
WD-10 0.14 2.52 48.45 DL 0.08 BDL 2.96 154 BDL
WD-11 0.19 2.75 47.20 DL 0.13 BDL 2.70 1.53 BDL
WD-12 0.19 2.36 61.43 DL 0.09 BDL 281 1.07 BDL
WD-13 0.15 3.38 58.25 DL 0.12 BDL BDL 2.27 BDL
WD-14 0.19 271 61.21 DL 0.11 BDL BDL 1.60 BDL
WD-15 0.17 2.90 59.85 DL 0.21 BDL 2.30 1.70 BDL

BDL.: Below detection limit.

Atomic Absorption Spectrometer (AAS) analytical
results

Table 3 details the elemental concentrations of the iron
ore samples as measured by an atomic absorption
spectrometer (Popescu et al., 2009; El-Taher, 2010). The
(DL) values for U, Th, Pb, Bi, Mg, K, Fe, Ca and Al were
5,1, 2, 10, 100, 100, 100, 200 and 200 ppm,
respectively.  Potassium, bismuth and  uranium
concentrations were below detection limit (BDL). Lead
was detected in all samples except for WD-5, WD-6, WD-
13 and WD-14, and it varied from (BDL) to 14.29 ppm
and from (BDL) to 2.97 ppm for thorium. Thorium was not
detected in sample WD-7. The concentrations of
aluminium, calcium, iron and magnesium were measured
to be in the following ranges: 0.10 to 0.24% for
aluminium, 2.2 to 3.790% for calcium, 38.85 to 61.43%
for lIron and 0.07 to 0.35% for magnesium. The
concentration of potassium was at, or lower than (DL).
Papastergios et al. (2004) used inductively coupled
plasma optical emission spectrometry (ICP-OES) and
inductively coupled plasma mass spectrometry (ICP-MS)
to measure the concentration of the following elements in
uncultivated top-soils and various surrounding rocks:
calcium, magnesium, potassium, boron, strontium, iron,
sodium, silicon, sulphur, aluminium, zinc, manganese,
titanium, copper, vanadium, rubidium, chromium, barium,
bismuth, lanthanum, thorium, cerium, tin, arsenic, cobalt,
yttrium, selenium, zircon, cadmium, molybdenum,
caesium, antimony, tungsten, uranium, lithium, silver,
mercury, nickel, germanium and lead. The results of the
study by Papastergios et al. (2004) showed that the

concentrations of elements in the topsoil were influenced
mainly by their concentration in surrounding rocks. Mean
trace element concentrations in the topsoil were
compared with the global average values for Fluvisol and
Leptosol soil types (FAO, 1974; Kabata-Pendias, 2011)
Moreover, the topsoil mean trace element concentrations
were compared with those from three surrounding rock
samples; it was found that all the samples had high
concentrations of aluminium and iron, while magnesium,
calcium, thorium, and lead were in the range of safe
concentrations in all the samples except WD-1 and WD-
15.

The UK deems a safe maximum concentration for lead
in soil to be 300 mg kg'l, whereas in most countries it is
deemed to be 100 mg kg"l (Kabata-Pendias, 2011).
Fergusson (1990) found that some ferritic soils have
bismuth concentrations of up to 10 mg kg™, whereas
Tyler and Olsson (2005) found bismuth concentrations of
92 mg kg'1 in raw humus soil.

X-ray diffraction: Analytical results

Table 4 details the mineral content and description of
fifteen iron ore samples obtained by X-ray diffraction
(Preeti and Singh, 2007; Srivastava, 2014). The trace
mineral calcite (CaCO3) was monitored and found to be
present in all samples. The major minerals quartz (SiO5),
haematite (Fe,O3) and titanium Il oxide (Ti,O3) were
detected in samples WD-1, WD-2, WD-3, WD-4 and WD-
5, while for the remaining samples, only quartz (SiOy,
haematite (Fe,Os) were detected.
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Sample code Major mineral

Trace mineral

WD-1 Quartz {SiO}, Haematite {Fe,03}, Titanium{Fe(0.927)Ti(0.073)).0s} Calcite {CaCOs3}
WD-2 Quartz {SiO,}, Haematite {Fe,Oz3}, Titanium{(Fe(0.927)Ti(0.073)),03} Calcite {CaCOgz}
WwD-3 Quartz {SiO,}, Haematite {Fe,O3}, Titanium{(Fe(0.927)Ti(0.073)),03} Calcite {CaCOgz}
WD-4 Quartz {SiOy}, Haematite {Fe,03}, Titanium{(Fe(1.831)Ti(0.169)),03} Calcite {CaCOs3}
WD-5 Haematite {Fe,O3}, Titanium{(Fe(0.927)Ti(0.073)).03}, Quartz {SiO;} Calcite {CaCO3}
WD-6 Haematite {Fe,O3}, Quartz {SiO,} Calcite {CaCOs3}
WD-7 Quartz {SiO,}, Haematite {Fe,O3} Calcite {CaCO3}
WD-8 Quartz {SiO}, Haematite {Fe,O3} Calcite {CaCOs3}
WD-9 Quartz {SiO,}, Haematite {Fe,O3} Calcite {CaCO3}
WD-10 Quartz {SiOy}, Haematite {Fe,O3} Calcite {CaCOs3}
WD-11 Quartz {SiO,}, Haematite {Fe,O3} Calcite {CaCO3}
WD-12 Haematite {Fe»O3},Quartz {SiO,} Calcite {CaCOg}
WD-13 Haematite {Fe,O3},Quartz {SiO,} Calcite {CaCO3}
WD-14 Haematite {Fe»O3},Quartz {SiO,} Calcite {CaCOg}
WD-15 Haematite {Fe,O3},Quartz {SiO,} Calcite {CaCO3}

Haematite is one of the most abundant minerals found
on the surface and in the shallow crust of the Earth’s
surface, being found in sedimentary, metamorphic and
igneous rocks at locations throughout the world.
Haematite's colour ranges from black to grey and from
red to brown. Haematite has played an important
economic role in human society as a primary source of
iron. Rust is simply another form of haematite and
haematite dust is responsible for the reddish colour of
many soils and the Martian landscape (Kormann et al.,
1989; Deer et al., 2013).

Cevika et al. (2010) investigated the structure, chemical
characterisation and radiological properties of phosphate
rock from Turkey using X-ray fluorescence, X-ray
diffraction and an HPGe detector, and they compared the
data to results obtained from several studies on
phosphate rocks from Egypt, Syria, Tunisia, Algeria, and
Morocco. The mineral analysis showed that phosphate
samples were composed of P,0s, CaO, SiO,, SOs,
Fe,O3, Al,O3; and TiO,. The mean activity concentrations
of “*Ra, ®**Th and “K in the phosphate samples were
535, 20 and 148 Bq kg™, respectively. The radiological
hazard was also assessed. The average of absorbed
dose rate in air D, AEDE and Rae, were in the same
range as reported for the individual countries and
worldwide for all phosphate samples.

Conclusions

To evaluate the human health risk in Wadi Sawawin, in
the Duba region of Saudi Arabia, the background
radiation levels were determined using HPGe detector.
The results reveal that the average activity concentration
of “°K,?**Th and #°Ra in all Iron ore rocks samples are

lower than their corresponding allowed limit according to
the worldwide values. Also, all the calculated values of
radiological hazard are within the permissible range
reported by UNSCEAR (2000). So, it can be concluded
that the region under study is safe for inhabitation. In
addition, the elemental concentrations Al, Ca, Fe, K, Mg,
Bi, Pb, Th and U in the iron ore samples as measured by
an atomic absorption spectrometer. Also, the mineral
content was determined using X-ray diffraction, quartz
(Si0,) and haematite (Fe,Oz) were detected in all
samples as minor mineral content, while the Calcite
CaCO; was monitored in all samples as a trace mineral
content. Finally, Iron ore extracted from the region under
study can be used as building material.
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